
- Computer Science

ADmmA278 955/

ML Partial Evaluation using Set-Based Analysis

Karol ine Mal mkjmr Nevin Heintze Olivier Danvy
Februarv 1994 Ac

CMU-CS-94-129 NI.
JDTI(
lUna

DTIC
~VV~EMAY 0 6 1994

- Melilonliii

94-13668 194~

ML Partial Evaluation using Set-Based Analysis

Karoline Malmkjwer Nevin Heintze Olivier Danvy
February 1994 Accesion For

CMU-CS-94-129 NTIS CRAM&-
DTIC TAB
Unannouticed
Justification

By
Distribution I

School of Computer Science Availability Codes
Carnegie Mellon University i Avail and / or

Pittsburgh, PA 15213 Dist Special

(Also appears as Fox Memorandum CMU-CS-FOX-94-04.) / I

DTIC
MAY 0 1994

This work was partially sponsored by the Defense Advanced Research Projects Agency. CSTO.
under the title "The Fox Project: Advanced Development of Systems Software", ARPA Order No.
8313. issued by ESD/AVS under Contract No. Fl9628-91-C-0168. It was also partially sponsored
by the Danish Research Councils through the DART project.

The views and conclusions contained in this document are those of the authors and should not he
interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

Keywords: partial evaluation, ML, set-based analysis, set constraints, binding
time analysis, program specialization, continuation-based specialization.

Abstract

We describe the design and implementation of an off-line partial evaluator for
Standard ML programs. Our partial evaluator consists of two phases: analysis and
specialization.

Analysis: Set-based analysis is used to compute control flow, data flow and
binding-time information. It provides a combination of speed and accuracy
that is well suited to partial-evaluation applications: the analysis proceeds
at a few hundred lines per second and is able to deal with higher-order
functions, partially-static values, arithmetic, side effects and control effects.

Specialization: To treat the rich static information supplied by set-based analysis,
continuation-based specialization is used in conjunction with a notion of
"lightweight" symbolic values. The specializer adapts and improves upon
the proven design principles of off-line polyvariant partial evaluators.

Our system is integrated into the New Jersey compiler for Standard ML: both input
and output languages are the compiler's intermediate language LAMBDA. As such,
our ML partial evaluator is not a source-ML to source-ML program transformer
and issues of desugaring and type checking are avoided.
The core part of our implementation, handling higher-order programs with
partially-static values, is complete. We are currently working on extensions of
the specializer to treat computational effects.

1 Introduction

The last decade has seen substantial advances in partial evaluation [7, 12, 13]. In
particular, it now appears feasible to build practical large-scale partial evaluators.
At the same time, much effort has been directed towards building well-structured
systems software. Such efforts provide a rich source of motivating examples for
partial evaluation.

The specific context of our work is the CMU FOX project, which addresses
modular systems building in ML. Core parts of the standard TCP/IP network pro-
tocol suite have been implemented in an exceptionally structured and modular way
[2]. However, the extra modularization introduces additional run-time overhead.
Partial evaluation provides an appropriate tool for the removal of this overhead.

We aim to construct a system that provides practical and effective partial
evaluation of systems software written in ML. Such a system must address all
aspects of ML, including side-effects, control and arithmetic.

Our design uses "polyvariant specialization", which is an aggressive forward
constant propagation tightly paired with the multiple specialization of selected
source program points and driven by a global, off-line "binding-time" analysis.
Specifically:

Binding-time analysis: The program is pre-processed to compute information
about the static structure of values available at partial-evaluation time [5, 12,
16].

Specialization: The program is processed to propagate static values, perform static
computation and construct the residual program.

The technique is simple and effective.
In contemporary off-line partial evaluators [12], the binding-time analyzer is

designed to meet the needs of the specializer. In contrast, we do not have a tailored
binding-time analyzer. Instead, we obtain binding-time information by enriching
an independent and more generic source: set-based analysis [9]. Correspondingly,
our specializer is designed not only to use the binding-time information but also to
exploit set-based information.

Our system is integrated into the New Jersey ML compiler [11. The compiler's
LAMBDA intermediate language is used for both the input and output of the evalu-
ator. As such, our ML partial evaluator is not a source-ML to source-ML program
transformer. Instead, it operates on type-checked and syntactically-desugared pro-
grams. This approach differs substantially from that of Mix-style partial evaluators
such as Similix and (to a lesser extent) Schism [4, 61. Our system also differs from

I

Birkedal and Welinder's recent SML-Mix, which is a partial-evaluation compiler
tailored to generate partial evaluators dedicated to source ML programs 131.

ML has a powerful static semantics. For this reason we have chosen to partially
evaluate programs after the static semantics is processed. In this way the partial
evaluator can focus on the main goal of partial evaluation - removal of run-time
overhead - instead of spending resources on irrelevant issues such as processing
of ML static semantics.

One could speculate about the properties our partial evaluator should satisfy
besides the definitional one, i.e., running the specialized program on the remaining
input must yield the same result as running the source program on the complete
input (modulo termination). For example, should our partial evaluator preserve
ML typing? However, the question is not very meaningful for two reasons. First,
LAMBDA is not a typed language. Second, the compiler uses transformations that do
not preserve ML typability, e.g., CPS transformation [81 and also lambda-lifting.

2 System Structure

Before describing the analysis and specialization components of our system in
detail (Sections 3 and 4 respectively), we give an overview of our system:

1. The input ML program is first parsed, type-checked, and translated from
abstract syntax into LAMBDA code (this is all performed by the front-end of
the New Jersey compiler).

2. The LAMBDA code is then pre-processed. Intermediate results are named and
some trivial code simplifications are performed. The names are used in the
communication between the analyzer and the specializer.

3. The analysis phase of the partial evaluator is applied to the LAMBDA code
output by the pre-processing stage. The analyzer constructs a mapping from
variable identifiers into control-flow, data-flow and binding-time informa-
tion.

4. The mapping from the analysis phase and the LAMBDA code from the pre-
processing phase are then passed to the specializer. The output of the
specializer is another LAMBDA program.

5. The output of the specializer is compiled by the back-end of the New Jer-
sey compiler, and made available via a variable binding in the top-level
environment.

2

The choice of LAMBDA to represent programs throughout deserves comment.
LAMBDA provides a simp , representation of programs (there are only a small
number of different kinds uf expressions), and we avoid many of the issues of
syntactic processing and type checking that arise in the manipulation of ML source
programs. However, LAMBDA is not ideally suited for analysis and program ma-
nipulation for a number of reasons. The pre-processing (stage 2.) addresses some
of these problems. Ideally, one would like to have properties such as "each inter-
mediate result is named" and "operations are only applied to trivial expressions" to
be built into the definition of the representation. Sequentialization of intermediate
computations would also simplify program manipulation. (NB: These properties
are all met in nqCPS, A-normal forms, monadic normal forms, and higher-order
three-address code.)

3 Analysis

The set-based approach to program analysis employs a single notion of approxi-
mation: all inter-variable dependencies are ignored [9, 10, I1]. This is achieved by
treating variables as sets of values. In other words, the environments encountered
at each point in a program are collapsed into a single set environment (mapping
variables into sets). In effect, analysis is carried out by extracting relationships
between the sets of values for the program variables, and then reasoning about these
relationships. For example, when set-based analysis is applied to the program:

let fun append(nil, y') = y,

I append(x :: xs, y) = x :: append(xs, y)
fun rev nil = nil
I rev(z :: zs) = append(rev zs, (z])

in rev (1,2,3,4]
end

the result of the program is approximated by the set of all lists constructed from 1,
2, 3 and 4. In effect, the shape of the list is preserved, but information about the
order and length of the list are lost. A key difference from abstract-interpretation
approaches to program analysis is that set-based analysis does not use an underlying
abstract domain to approximate program values.

To obtain binding-time information, set-based analysis must be extended to
reason about unknown values or parameters. These parameters are manipulated
and propagated by the analysis so that the output of the analysis is correct for all
instantiations of the parameter. That is, set-based analysis must take into account all
possible behaviors of the parameter. For example, in the context of the definition

3

of append, suppose that we call append [1, 2] , dynamic), where the token
dynamic is a parameter indicating a dynamic value. Set-based analysis yields the
following description:

,' = 1 U2

C = dynamic U (X ::,C)

where £ is the set variable describing the results of the call to append. The next

example illustrates a combination of polyvariant analysis and parametric reasoning:

fun map f nil nil
I map f (x 1) = (f x) :: (map f 1)

val t = [1,2,3]
val d = dynamic
val u = map (fn x => (x, d)) t
val v = map (fn (x, y) => x) u
val w = map (fn (x, y) => y) u

For this program, set-based analysis yields the following information about the
variables u, v and w: u is a list of pairs whose first element is either 1, 2 or 3 and

whose second argument is dynamic; v is a list of 1's, 2's and 3's, and w is a list of

dynamic's.
We conclude this brief overview by illustrating some important issues arising

in set-based binding-time analysis. Consider the following program fragment:

val (vl, v2) = dynamic
val w = if dynamic then 1 else 2

In the first statement, vi and v2 de-construct the parameter dynamic. This is

modeled by introducing a derived parameter subterm (dynamic), whose purpose

is to denote the set of all subterms of the parameter dynamic. In the second
statement, a standard set-based analysis would just compute the set { I.2) for w;
however it is important to propagate the fact that the value of w is not statically

determined. When a test is dependent on a dynamic parameter, we therefore

introduce a computation-dynamic parameter to the result of the if statement, so
that the eventual set computed for w is { 1, 2} U computation-dynamic.

4 Specialization

We use off-line, polyvariant specialization. It is off-line because m. -t of the
control decisions needed in the specializer are determined by information from the

4

analyzer. It is polyvariant because it selects a set of specialization points in the
source program and produces a residual program consisting of multiple variants
of these. Furthermore, we handle higher-order and partially-static values. Since
we want a flexible, extensible, and efficient system, we have aimed for a simple
design, re-using concepts that have proven successful in previous off-line partial
evaluators.

Since we operate in LAMBDA, we avoid many problems often associated with
partial evaluation for typed languages. On the other hand, it also imposes some
restrictions. It is for example crucial to be able to process partially-static values
since in LAMBDA, function parameters are passed as records.

The specializer is guided by the information computed by the analyzer. Using
the static input, the specializer starts at the entry point of the source program and
propagates constant values through the program by unfolding function calls and
reducing static expressions. Residual code is generated whenever parts of the
source program cannot-be statically evaluated.

Some source functions are recursive, and often there is not enough information
to execute their calls statically. Instead we need to construct residual recursive
functions. A simple mechanism is to select specialization points in the source pro-
gram. When the specializer meets a specialization point, it generates residualized
code representing a specialized version of the specialization point. (This is referred
to as either "polyvariant specialization", "customization", or "procedure cloning"
in the literature.)

As specialization points, we use conditional expressions whose test is dynamic.
Experience suggests that this is a good choice [121, but further optimization is
possible [15]. In a pre-pass through the program, the specialization points are
lambda-lifted into a collection of global recursive equations. The free variables of
each conditional expression are given as parameters to the recursive equation. We
remark that whereas function calls are unfolded, calls to global recursive equations
(the specialization points) are always residualized. The residual program is thus a
collection of recursive equations.

Effective unfolding requires finer descriptions of values than given by the
coarse "known / unknown" distinction. Such descriptions include higher-order
and partially static values. Partial evaluators typically represent these symbol-
ically. This representation causes problems in the presence of call unfolding,
such as computation duplication, reordering, and loss of dynamic computations.
Our design solves this by naming residual computations. However, naming has
the disadvantage of limiting the static data flow. This shortcoming can be ad-

5

dressed by using continuation-based specialization. In effect, continuations are
used to communicate across naming: the continuation accounts for the specializa-
tion context, and is sent the name of the residual expression. More detail about
continuation-based specialization can be found elsewhere [12, Sec. 10.5] [14].

Since residual computations are named, any dynamic subpart of a symbolic
value is a variable. To simplify the treatment of symbolic values at specialization
points, we represent them as pairs: the actual symbolic value (simple, higher
order, or partially static) and the list of its free dynamic variables. We call this
representation lightweight symbolic values.

We illustrate elements of our design with the following declaration of and call
to a specialization point:

let fun foo (x, y, z) .
in

... foo (a, b, c) ...
end

Suppose that when the call foo (a, b, c) is processed, the first argument a is
the partially-static value (CON1 (vl, 10) , [vi]) : the construction CON1 of a
dynamic variable vi, and the number 10, paired with the list of its free vari-
ables. The second argument is the higher-order value (fn x => x + y, (y =
(CON2 (v2,20), [v2])) , [v2]): a closure with one free variable y bound to
another partially-static value. The third argument is a constant string ("hello
world", (]).

Then we obtain the following residual specialization point and corresponding
residual call:

let fun foo' (vl', v2') =
in

* .. foo' (vl, v2) ...
end

where foo', vl', and v2' are fresh names. All the static information about the
arguments of foo has been propagated into the body of foo'. All the dynamic
information has been filtered out and residualized in the call to foo' - without
traversing any symbolic values. Note that, in general, there is no relationship
between the number of arguments of the specializu.ion point and the number of
arguments of its residualized versions.

The specializer is designed to be simple, efficient, and extensible. Set-based
analysis itself provides one possible extension: it yields more information than

6

a typical binding-time analysis. Instead of stating that an identifier denotes a
(partially) static or dynamic value, it describes a set of values for the identifier.
This provides an opportunity for much finer program specialization. Set-based
analysis also provides information about side effects and control effects. We are
currently extending the specializer to exploit that information.

5 Conclusion

We are building a partial evaluator for Standard ML programs. Our partial evaluator
is implemented as an extension of the New Jersey compiler (and is itself written in
ML). It is structured as an off-line system consisting of a set-based binding-time
analysis and a continuation-based specializer.

The goals of ourdesign are simplicity, robustness, and efficiency. It streamlines
a number of concepts from previous partial evaluators. Moreover, lightweight
symbolic values provide an efficient representation of static values.

One of the original motivations for this work is the FOX project [21. This
project uses ML for building system software, and crucially needs a powerful
compile-time optimizer. For various reasons, existing implementations of ML
do not use global flow analyses or partial evaluation. Our work is one of the first
efforts to employ global analysis for ML program transformation and optimization.

References

[11 Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, 1992.

[2] Edoardo Biagioni, Robert Harper, Peter Lee, and Brian Milnes. Signatures
for a network protocol stack: A systems application of Standard ML. In
Talcott [18].

[31 Lars Birkedal and Morten Welinder. Partial evaluation of Standard ML.
Master's thesis, DIKU, Computer Science Department, University of Copen-
hagen, August 1993.

[41 Anders Bondorf. Automatic autoprojection of higher-order recursive equa-
tions. Science of Computer Programming, 17(1-3):3-34, 199 1. Special issue
on ESOP'90, the Third European Symposium on Programming, Copenhagen,
May 15-18, 1990.

7

[51 Charles Consel. Binding time analysis for higher order untyped functional
languages. In Mitchell Wand, editor, Proceedings of the 1990 ACM Confer-
ence on Lisp and Functional Programming, pages 264-272, Nice, Friace,
June 1990. ACM Press.

[61 Charles Consel. A tour of Schism: A partial evaluation system for higher-
order applicative languages. In Schmidt [171, pages 145-154.

[71 Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In
Susan L. Graham, editor, Proceedings of the Twentieth Annual A CM Sympo-
sium on Principles of Programming Languages, pages 493-501, Charleston,
South Carolina, January 1993. ACM Press.

[81 Bob Harper and Mark Lillibridge. Polymorphic type assignment and CPS
conversion. In Carolyn L. Talcott, editor, Special issue on continuations, LISP
and Symbolic Computation, Vol. 6, Nos. 3/4. Kluwer Academic Publishers,
1993.

[91 Nevin Heintze. Set-Based Program Analysis. PhD thesis, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, Octo-
ber 1992.

[101 Nevin Heintze. Set-based program analysis of ML programs. In Talcott [181.

[11] Nevin Heintze and Joxan Jaffar. A finite presentation theorem for approxi-
mating logic programs. In Paul Hudak, editor, Proceedings of the Seventeenth
Annual ACM Symposium on Principles of Programming Languages, pages
197-209, San Francisco, California, January 1990. ACM Press.

[121 Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall International, 1993.

[131 Nei! D. Jones, Peter Sestoft, and Harald Sondergaard. An experiment in
partial evaluation: The generation of a compiler generator. In Jean-Pierre
Jouannaud, editor, Rewriting Techniques and Applications, number 202 in
Lecture Notes in Computer Science, pages 124-140, Dijon, France, May
1985.

[141 Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In
Talcott [181.

[151 Karoline Malmkjwer. Towards efficient partial evaluation. In Schmidt 1171,
pages 33-43.

8

[161 Femming Nielson and Hanne Riis Nielson. Two-Level Functional Lan-
guages, volume 34 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1992.

[171 David A. Schmidt, editor. Proceedings of the Second ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation,
Copenhagen, Denmark, June 1993. ACM Press.

[181 Carolyn L. Talcott, editor. Proceedings of the 1994 A CM Conference on Lisp
and Functional Programming, LISP Pointers (to appear), Orlando, Florida,
June 1994. ACM Press.

9

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carneg(a ,:c'Jon University does not discriminate and Carnegie Melion University is required not to
discriminate in admission, employment or admnistration of its programs on hie basis of race. color
national origin, sex or handicap in violation of Title VI of the Civi Rights Act of 1964. Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehablitaton Act of 1973 or other federal.
state or local laws, or executive orders

In addition. Carnegie Mellon University does not discrimnate in admission employment or adminis-
tration of its programs on the basis of religion, creed, ancestry, belief, age, veteran status. sexual
orientation or in violation of federal, state or local laws or executive orders

Inquiries concerning application of these statements Should be directed to Ine Provost. Carnegie
Mellon University 5000 Forbes Avenue. Pittsburgh. PA 15213. telephone (412) 268-6684 or the Vice
President for Enrollment. Carneg,.e Mellon University. 5000 Forbes Avenue. Pittslurgh. PA 15213
telephone (412) 268-2056

